Refine Your Search

Topic

Author

Search Results

Magazine

SAE Off-Highway Engineering: December 2, 2015

2015-12-02
Improving heavy-duty engine component efficiencies Cylinder deactivation can improve fuel economy by using a reduced number of cylinders that operate at higher loads and thermal efficiency, while other cylinders are turned off, when the engine operates at partial load conditions. A switching roller finger follower is one of the technologies that help make it work. Pumping up hydraulic capabilities Electrohydraulic advances keep coming as distributed electronics flex their muscle. Tracking the trends in commercial vehicle communications Industry insiders at Molex offer what they think the future may hold for heavy-duty components in 24/7 communications systems. ADAS system validation It is crucial that different advanced driver assistance systems functionalities interact seamlessly with existing electronic control unit (ECU) networks.
Technical Paper

Cyber-security for Engine ECUs: Past, Present and Future

2015-09-01
2015-01-1998
In this paper, we outline past, present and future applications of automotive security for engine ECUs. Electronic immobilizers and anti-tuning countermeasures have been used for several years. Recently, OEMs and suppliers are facing more and more powerful attackers, and as a result, have introduced stronger countermeasures based on hardware security. Finally, with the advent of connected cars, it is expected that many things that currently require a physical connection will be done remotely in a near future. This includes remote diagnostics, reprogramming and engine calibration.
Technical Paper

Securing Connected Vehicles End to End

2014-04-01
2014-01-0300
As vehicles become increasingly connected with the external world, they face a growing range of security vulnerabilities. Researchers, hobbyists, and hackers have compromised security keys used by vehicles' electronic control units (ECUs), modified ECU software, and hacked wireless transmissions from vehicle key fobs and tire monitoring sensors. Malware can infect vehicles through Internet connectivity, onboard diagnostic interfaces, devices tethered wirelessly or physically to the vehicle, malware-infected aftermarket devices or spare parts, and onboard Wi-Fi hotspot. Once vehicles are interconnected, compromised vehicles can also be used to attack the connected transportation system and other vehicles. Securing connected vehicles impose a range of unique new challenges. This paper describes some of these unique challenges and presents an end-to-end cloud-assisted connected vehicle security framework that can address these challenges.
Standard

DATALINK SECURITY PART 2 - KEY MANAGEMENT

2008-03-10
CURRENT
ARINC823P2
The purpose of this document is to provide recommended guidance and provisions for ACARS Message Security (AMS) key management. The key management framework described herein is based on open international standards that are adapted to the ACARS datalink communications environment.
Standard

COMMERCIAL AIRCRAFT INFORMATION SECURITY CONCEPTS OF OPERATION AND PROCESS FRAMEWORK

2005-12-20
CURRENT
ARINC811
The purpose of this document is to facilitate an understanding of aircraft information security and to develop aircraft information security operational concepts. This common understanding is important since a number of subcommittees and working groups within the aeronautical industry are considering aircraft information security. This document also provides an aircraft information security process framework relating to airline operational needs that, when implemented by an airline and its suppliers, will enable the safe and secure dispatch of the aircraft in a timely manner. This framework facilitates development of cost-effective aircraft information security and provides a common language for understanding security needs.
Standard

E/E Data Link Security

2005-06-27
HISTORICAL
J2186_200506
This SAE Recommended Practice establishes a uniform practice for protecting vehicle components from "unauthorized" access through a vehicle data link connector (DLC). The document defines a security system for motor vehicle and tool manufacturers. It will provide flexibility to tailor systems to the security needs of the vehicle manufacturer. The vehicle modules addressed are those that are capable of having solid state memory contents accessed or altered through the data link connector. Improper memory content alteration could potentially damage the electronics or other vehicle modules; risk the vehicle compliance to government legislated requirements; or risk the vehicle manufacturer's security interests. This document does not imply that other security measures are not required nor possible.
Technical Paper

EncryptionS Role in Vehicle Information Security

1998-10-19
98C044
A broad range of information is being delivered to and used within modern vehicles. Information-based applications are becoming more highly integrated into the automobile. Security services are necessary to provide appropriate protection for this information. Encryption, digital signature, and hash functionalities enable information security services such as confidentiality, authentication, integrity and non-repudiation. However, the consumer of in-vehicle information services will not accept security services that introduce any inconvenience to their activities. This paper will discuss various security service methods and security management systems and propose methods to integrate these services acceptably into vehicle-based applications.
Standard

E/E DATA LINK SECURITY

1996-10-01
HISTORICAL
J2186_199610
This SAE Recommended Practice establishes a uniform practice for protecting vehicle components from "unauthorized" access through a vehicle data link connector (DLC). The document defines a security system for motor vehicle and tool manufacturers. It will provide flexibility to tailor systems to the security needs of the vehicle manufacturer. The vehicle modules addressed are those that are capable of having solid state memory contents accessed or altered through the data link connector. Improper memory content alteration could potentially damage the electronics or other vehicle modules; risk the vehicle compliance to government legislated requirements; or risk the vehicle manufacturer's security interests. This document does not imply that other security measures are not required nor possible.
Standard

EXPANDED DIAGNOSTIC PROTOCOL FOR OBD II SCAN TOOLS

1995-12-01
HISTORICAL
J2205_199512
This SAE Recommended Practice defines the Expanded Diagnostic Protocol (EDP), the requirements for the SAE J1978 OBD II Scan Tool for supporting the EDP protocol, and associated requirements for diagnosis and service information to be provided by motor vehicle manufacturers. Appendix A includes worked examples of the use of the protocol.
Standard

EXPANDED DIAGNOSTIC PROTOCOL FOR OBD II SCAN TOOLS

1994-06-01
HISTORICAL
J2205_199406
This SAE Recommended Practice defines the Expanded Diagnostic Protocol (EDP), the requirements for the SAE J1978 OBD II Scan Tool for supporting the EDP protocol, and associated requirements for diagnosis and service information to be provided by motor vehicle manufacturers. Appendix A includes worked examples of the use of the protocol.
X